High-throughput fluorescence-based screening assays for tryptophan-catabolizing enzymes.
نویسندگان
چکیده
Indoleamine 2,3-dioxygenase (IDO1) and tryptophan 2,3-dioxygenase (TDO) are two structurally different enzymes that have a different tissue distribution and physiological roles, but both catalyze the conversion of tryptophan to N-formylkynurenine (NFK). IDO1 has been clinically validated as a small-molecule drug target for cancer, while preclinical studies indicate that TDO may be a target for cancer immunotherapy and neurodegenerative disease. We have developed a high-throughput screening assay for IDO1 and TDO based on a novel chemical probe, NFK Green, that reacts specifically with NFK to form a green fluorescent molecule with an excitation wavelength of 400 nm and an emission wavelength of 510 nm. We provide the first side-by-side comparison of a number of published inhibitors of IDO1 and TDO and reveal that the preclinical IDO1 inhibitor Compound 5l shows significant cross-reactivity with TDO, while the relative selectivity of other published inhibitors was confirmed. The suitability for high-throughput screening of the assays was demonstrated by screening a library of 87,000 chemical substances in 384- or 1536-well format. Finally, we demonstrate that the assay can also be used to measure the capacity of cells to metabolize tryptophan and to measure the cellular potency of IDO1 and TDO inhibitors.
منابع مشابه
Identification of selective inhibitors of uncharacterized enzymes by high-throughput screening with fluorescent activity-based probes
High-throughput screening to discover small-molecule modulators of enzymes typically relies on highly tailored substrate assays, which are not available for poorly characterized enzymes. Here we report a general, substrate-free method for identifying inhibitors of uncharacterized enzymes. The assay measures changes in the kinetics of covalent active-site labeling with broad-spectrum, fluorescen...
متن کاملEvolution of enzymes with new specificity by high-throughput screening using DmpR-based genetic circuits and multiple flow cytometry rounds
Genetic circuit-based biosensors are useful in detecting target metabolites or in vivo enzymes using transcription factors (Tx) as a molecular switch to express reporter signals, such as cellular fluorescence and antibiotic resistance. Herein, a phenol-detecting Tx (DmpR) was employed as a critical tool for enzyme engineering, specifically for the rapid analysis of numerous mutants with multipl...
متن کاملThe Importance of Being Profiled: Improving Drug Candidate Safety and Efficacy Using Ion Channel Profiling
Profiling of putative lead compounds against a representative panel of relevant enzymes, receptors, ion channels, and transporters is a pragmatic approach to establish a preliminary view of potential issues that might later hamper development. An early idea of which off-target activities must be minimized can save valuable time and money during the preclinical lead optimization phase if pivotal...
متن کاملLSN12 p14-16 AMENDED
extensive small molecule libraries has led to the demand for an increase in both the sensitivity and speed of assays. Increasingly, fluorescence-based assays are becoming the method of choice for high-throughput screening. Here, we describe the properties of a number of reagents developed by Amersham Biosciences for use in timeresolved fluorescence assays based on fluorescence resonance energy ...
متن کاملFluorescence-based assays for screening nine cytochrome P450 (P450) activities in intact cells expressing individual human P450 enzymes.
In this study we describe a battery of fluorescence assays for rapid measurement in intact cells of the activity of nine cytochromes P450 (P450s) involved in drug metabolism. The assays are based on the direct incubation of monolayers of cells expressing individual P450 enzymes with a fluorogenic substrate followed by fluorimetric quantification of the product formed and released into incubatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomolecular screening
دوره 19 9 شماره
صفحات -
تاریخ انتشار 2014